Retro-commissioning (RCx)

Example 12 – Electrical Installation

ESO: To review power quality of electrical distribution network

Facility / Equipment

Baseline case:

- 1. The building has 2 transformers (1 Tx for AC, 1 Tx for Ltg & power)
- 2. Measured PF below 0.92 and 0.9 respectively

Optimization opportunities:

1. Check Capacitor Banks, carry out necessary repair / upgrade work to improve PF

ESO: To review power quality of electrical distribution network

Excessive distribution loss and poor power quality reduce efficiency of the electrical distribution network, cause unwanted energy losses, as well as overheating of conductors and apparatus that may impose additional cooling load for air-conditioning system.

ESO: To review power quality of electrical distribution network

Power Factor & Copper Loss

- copper loss = I²R
- The loss fraction reduction through improving power factor is expressed by: [1-(PF/PF')²] x 100%
- When PF improves from 0.85 to 0.95, the loss fraction reduction is: [1-(0.85/0.95)²] x 100% = 20%
- Assume the original copper loss of the circuit without correction device is 2%, the reduced copper loss is 0.4% (=2% x 20%) (assume correction devices install at load side)
- i.e. max. 0.4% energy saving

ESO: To review power quality of electrical distribution network

Power Factor & Demand Charge

- Improving TPF of the building can directly reduce the demand charge by reducing the peak demand value
- Reduction in peak demand can be calculated by: (1- TPF /TPF') x100%
- When TPF improves from 0.85 to 0.95
- Reduction in peak demand (kVA) =(1- 0.85/0.95) x 100% = 10.5%

> ESO: To review power quality of electrical distribution network

Example

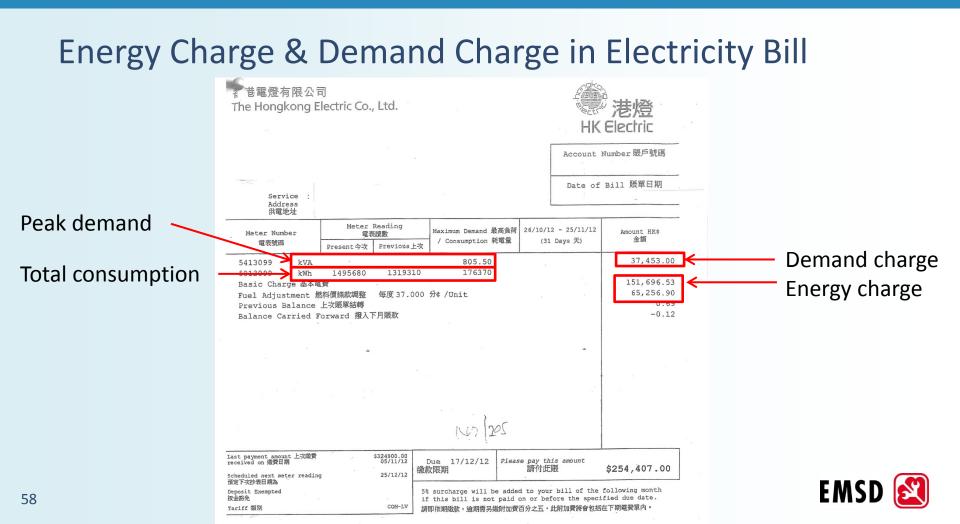
- Annual electricity charge : \$4,000,000 (85% energy charge ,15% demand charge
- TPF from 0.85 to 0.95
- Energy charge saving = \$ 4,000,000 x 0.85 x 0.4% = \$ 13,600
- Demand charge saving = \$ 4,000,000 x 15% x 10.5% = \$ 63,000
- Total saving = \$76,600

HKE Tariff table (for reference)

Max Demand Tariff (min. 100 kVA of chargeable demand) (1 Jan 2017)		
(a) Demand Charge		
For each of the first 400kVA	\$48.3	
For each of the next additional kVA	\$47.3	
(b) Energy Charge (basic without fuel adjustment)		
On-Peak Period		
For each of the first 200 units supplied per month per	101.0 cents	
kVA of maximum demand		
For each additional unit supplied in the month	96.4 cents	

CLP Tariff table (for reference)

Bulk Tariff (expected monthly consumption min. 20,000 units) (1 Jan 2017) (a) Demand Charge **On-Peak Period** Each of the first 650 kVA \$68.4 Each kVA above 650 \$65.4 **Off-Peak Period** Each off-peak kVA up to the on-peak billing demand \$0.0 Each off-peak kVA in excess of the on-peak billing demand \$26.8 (b) Energy Charge (basic without fuel adjustment) **On-Peak Period** Each of the first 200,000 units 73.8 cents Each unit over 200,000 72.2 cents **On-Peak Period** Each unit 66.1 cents



CLP Tariff table (for reference)

Large Power Tariff (expected monthly consumption min. 3,000 kVA) (1 Jan 2017)

(a) Demand Charge	
On-Peak Period	
Each of the first 5,000 kVA	\$120.3
Each kVA over 5,000	\$115.3
Off-Peak Period	
Each off-peak kVA up to the on-peak billing demand	\$0.0
Each off-peak kVA in excess of the on-peak billing demand	\$33.9
(b) Energy Charge (basic without fuel adjustment)	
On-Peak Period	
Each of the first 200 units per kVA of on-peak billing demand	56.7 cents
Each unit in excess of above	54.7 cents
On-Peak Period	
Each unit	46.9 cents

