Dynamic Chiller Plant Optimization

Evan Cheng
ATAL Building Services Engineering Ltd
Understanding of Retro-Commissioning
Overview of HKSAR Gov’t Policy on Building Energy Use

Energy Reduction Target:

- In COP21 held in Paris in 2015, China committed to lower carbon emission intensity (emissions per unit of GDP) by 60% to 65% from the 2005 level by 2030.

- Hong Kong has set the target of achieving energy intensity reduction by 40% by 2025 using 2005 as the base.
Technical Guidelines on RCx

• Key Objective: Enhance the **building energy efficiency**

• Focus on **energy consuming equipment/systems** that operate properly as design or users’ requirement and to **identify some area of improvements** (e.g. shifting of system control settings, inaccuracy of sensors, improper operational schedules and improper air & water balancing, etc.)
Chiller plants are one of the largest energy saving opportunities

Key Facts:
- More than 50,000 buildings in Hong Kong
- Buildings account for 90% of total electricity consumption in Hong Kong
- Among different building services (BS) systems, HVAC consumes the most energy consumption (55%) in office buildings

Implications:
- Reducing energy use by HVAC in commercial buildings is a key measure to take to help realize HK’s energy intensity reduction target.
How to further reduce HVAC energy consumption

Apart from the traditional approach
- using energy efficient equipment (e.g. VSD chiller, pumps, cooling towers)
Utilization of BMS Big Data is a Way Out for RCx

BMS Data enables us to:

- Know how the current performance is
- Understand when and where the best performance occurs
- Identify Energy Waste (due to presence of unnoticed faults)
Overview of Chiller Plant Control

1st Generation
- **Traditional Chiller Plant Control**
 - Features:
 - Match cooling load demand
 - Balance equipment running hours
 - Meeting design temperature set points

2nd Generation
- **Optimization Control**
 - Features:
 - Determine chiller sequencing based on energy use & equipment design data
 - Temperature reset (summer/winter mode)
 - Mainly focus on chiller energy use

3rd Generation
- **Dynamic Optimization Model**
 - Features:
 - Real time optimization for the whole chiller plant
 - Evaluate all possible combinations of equipment for optimization
 - Use actual BMS data for system model development
Data Quality Diagnosis - Flow Rate Sensors

Comparison between header CHW flow rate and individual chiller flow rate

Note: The data period is from 01 Jan 2016 to 31 Dec 2016
Data Quality Diagnosis - Temperature Sensors

Comparison between header CHWR temp and individual chiller CHWR temp

Note: The data period is from 01 Jan 2016 to 31 Dec 2016
Annual Peak Cooling Load Profile:

<table>
<thead>
<tr>
<th>Year 2016</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Cooling Load (kW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2/2016 8:00</td>
<td>724</td>
<td>799</td>
<td>741</td>
<td>1033</td>
<td>1377</td>
<td>1556</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2016</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Cooling Load (kW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/4/2016 12:00</td>
<td>1533</td>
<td>1648</td>
<td>1420</td>
<td>1391</td>
<td>1149</td>
<td>879</td>
</tr>
</tbody>
</table>

Calendar dates and times:
- Jan 1, 2016, 8:00
- Feb 13, 2016, 8:00
- March 30, 2016, 15:00
- April 25, 2016, 13:00
- May 30, 2016, 14:00
- June 27, 2016, 15:00
- July 4, 2016, 12:00
- August 8, 2016, 12:00
Daily cooling load profile (Summer vs Winter):

Summer

<table>
<thead>
<tr>
<th>Date</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiller Plant Cooling Load (kW)</td>
<td>179</td>
<td>188</td>
<td>119</td>
<td>182</td>
<td>153</td>
<td>156</td>
<td>163</td>
<td>226</td>
<td>1361</td>
<td>1341</td>
<td>1445</td>
<td>1413</td>
</tr>
<tr>
<td>Chiller Plant Cooling Load (kW)</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>Chiller Plant Cooling Load (kW)</td>
<td>1648</td>
<td>1599</td>
<td>1568</td>
<td>1581</td>
<td>1555</td>
<td>1469</td>
<td>1304</td>
<td>402</td>
<td>310</td>
<td>269</td>
<td>253</td>
<td>127</td>
</tr>
</tbody>
</table>

Winter

<table>
<thead>
<tr>
<th>Date</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiller Plant Cooling Load (kW)</td>
<td>69</td>
<td>84</td>
<td>101</td>
<td>126</td>
<td>150</td>
<td>143</td>
<td>84</td>
<td>64</td>
<td>799</td>
<td>415</td>
<td>437</td>
<td>507</td>
</tr>
<tr>
<td>Chiller Plant Cooling Load (kW)</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>Chiller Plant Cooling Load (kW)</td>
<td>512</td>
<td>463</td>
<td>487</td>
<td>133</td>
<td>152</td>
<td>147</td>
<td>89</td>
<td>90</td>
<td>96</td>
<td>78</td>
<td>120</td>
<td>143</td>
</tr>
</tbody>
</table>
Cooling Load Analysis

Weekday

- non-office - 0.5
- non-office - 1.0
- non-office - 1.5
- non-office - 2.0
- non-office - 2.5
- office - 0.5
- office - 1.0
- office - 1.5
- office - 2.0
- office - 2.5

Weekend and Public Holiday

- non-office - 0.5
- non-office - 1.0
- non-office - 1.5
- non-office - 2.0
- non-office - 2.5
- office - 0.5
- office - 1.0
- office - 1.5
- office - 2.0
- office - 2.5

~700kW

21°C
Actual Chiller Model

Actual Chiller Performance Chart at Tchws=7
Continuous Building Optimization

- Collect Trend log from BMS
- Data processing and cleaning
- Calculate the optimal operation point
- Command the BMS for action

BMS
Local Database Server
Cloud Optimization System
Summary

Features and Benefits:

- Real-time continuous, reliable, automated optimization control
- Whole chiller plant optimization
 - Determine the most efficient combination of chillers, pumps and cooling towers for different control setting
 - Ensure that the chiller plant is operating in its most efficient state year-round, regardless of load
 - Considered the real-time weather condition
THANK YOU